xindoo is
always here

布隆过滤器


布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

基本概念

如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢(O(n),O(logn))。不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit
array)中的一个点。这样一来,我们只要看看这个点是不是1就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

Hash面临的问题就是冲突。假设Hash函数是良好的,如果我们的位阵列长度为m个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳m / 100个元素。显然这就不叫空间效率了(Space-efficient)了。解决方法也简单,就是使用多个Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。


优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外,
Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

km相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。

布隆过滤器


缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。


打赏
未经允许不得转载:XINDOO » 布隆过滤器
分享到: 更多 (0)

评论 抢沙发

xindoo

联系我联系我们

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏